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THE INVERSE PROBLEM AND THE PSEUDO-EMPIRICAL ORTHOGONAL FUNCTION .

METHOD OF SOLUTION PART 1: THEORY; PART 2: APPLICATION

I. THEORY -•

1.1 Introduction

Many schemes have been developed to solve the so-called "inverse

problem." However, it remains a fact, regardless of the scheme, that

normally the information content in a given set of measurements is

severely limited. Therefore, our recoverable knowledge of the unknown,

if deduced solely from the measurements, is also going to be severely

limited. The difference between the various inversion schemes is pri-

marily due to the additional information that the set of equations is

given. This additional information is normally in the form of "phys-

ically plausible" constraints.
[the

The list of methods is too long to repeat here the interested

reader can be referred to Twomey, Deirmendjian, 2 and Bottiger, but

it follows that, in any method of solution employing one or more con-

straints, the final solution will depend to some degree on the valid-

ity of the constraint for the particular problem and, therefore, is

not completely objective.

Given a set of measurements, gi, i = 1, 2, -.. m, the governing

equation for the inverse problem can normally be written as a Fredholm

integral of the first kind:
b

gi f ki(x) f(x) dx (1)
a

where ki(x) is the i kernel of the problem, and f(x) is the unknown.

The measurement gi is, therefore, a dot product in the function space

between the ith kernel and f(x). Therefore, the part of the solution,

f(x), that can be recovered from the measurements must lie within the

function space spanned by the kernels. Any solution or component of .
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a solution which is outside this function space requires additional

information (constraints) and/or assumptions, in order to be recovered.

The presence of measurement errors and uncertainties in the mathemat-

ical model and the physical processes represented by the kernels act

to further increase the unrecoverable part of the solution.
I.

Equation (1) can be approximated in some fashion by a discrete sum,

such that f(x) is calculated at some set of x's, and therefore may be

rewritten in a matrix form:

g =A f (2)

where g is an mxl vector made up of the set of measurements; A is an

mxn matrix representing the kernel and may contain weighting factors

which depend on the quadrature formula used for converting from an

integral to a finite sum; and f is the unknown nxl column vector

whose elements are f.. The direct solution of the basic Eq. (2) is
1

+ "1
f=A g

or

f (AA)' (Ag+), (3)

when the Amatrix is not square where T denotes the transposed matrix.

All methods of solution for Eq. (2) require the computation (directly

or indirectly) of the inverse of the matrix The instability as

a result of the inverse operation and its relation to the eigenvalues

and eigenvectors of the matrix XT Awill be demonstrated as follows.5,6

Let the exact equation to be solved be written as:

+V

b Gf (4)

where b is the transposed measurement vector Ag and G is the A A

8
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matrix 3btained from Eq. (2) after premultiplication by AT. If a
4

small perturbation 6b is assumed in the measurements and the result-

ing perturbation 6f is estimated such that

b + 6b =G(f+ Sf), (5)

then subtracting Eq. (4) from Eq. (5) yields

6b = GEf (6)
+ E~-16+

6f = b.

The matrix G is a symmetric and real matrix, so that its eigen-
I,

values A. are real and positive and 0 < A1 ( A2 X < <An. The eigen-

values of G are 0 < 1/Xn < 1/X "'" 1/xlA and the eigenvectors of

G and G are ul, u2 *.. un. Assume now that any perturbation vector
+ ÷

6b can be written as a linear combination of the eigenvectors ui, i =

1,2 ... n. For the specific case for which 6b = cui, where c is the
+k

magnitude of Sb, Eq. (6) may be written as:

+ ~~1+
:f = G eui.. (7)

By using the eigenvalue equation for G'- G u. (1IA.)u yields:

+ 11+

A 6b. (8)
1 4

The error of magnitude 16bl is amplified by a factor 1/Xi, which can

be very large when A. is close to zero for a nearly singular matrix.

Furthermore, from Eq. (4), it follows that f = G-ib, and for b =au

where a is the magnitude of b, the minimum magnitude for f will be

+ 1 +
f > T-b, (9)

n
where Xn is the largest eigenvalue.

n-N 9I



Combining Eqs. (8) and (9) yields an estimate for the relative error: J

n
< - , (10)

I\1,V -

which says that the relative error in f is less than or equal to the

relative error in b times the ratio of the largest to the smallest

eigenvalue of G.
4

By improving the quality of the measurements and the model, the

magnitude of the error 16bi = c can be controlled. However, it is

important to note that the direction of 6b is outside of control. The

probability always exists that some of the error vector will be in the

direction of ul, and a very large error in the solution f will result.

If it is desired to include in the error magnification analysis the

combined effect of error in the measurements and error in the kernel

function, Twomey 1 (pp. 207 - 210) can be followed to solve for the

case in which r is an error measurement vector that obeys normal addi-

tive statistics. = N(O,e 2 gi 2 ); N represents normal statistics, and

e is a fraction error in gi. Letting ni(r) be the error in the kernel
2, 2

ki(r), which obeys normal additive statistics, ni(r) = N[O,P 2 (r)],

where P is a fraction error in ki(r) and there is no correlation between
1

E and n. The worst case of relative error magnification can be deter-

mined if the problem is normalized such that ý6

h b

f 2((x) dr = 1, and ki 2(x) dx = 1, i = 1,2 ... m to be "

a a
P2X p2 /1* 2%2

!n) 2 /+_ 2 _I + n + 2 n (11)

g1 i 2 e 2

10



or the best case of relative error magnification is expressed by: .J

' 2/ 2 2

I+(f)1/1fl2= + P + p2 (12)

E E12/1g1 2]2

Both Eqs. (11) and (12) give Twomey's results when P + 0 (no error in

the kernels).

The problems of more unknowns than available independent equations

and of inherent instability arise when a solution of the basic equa-

tion, Eq. (2), is attempted. It is important to note that, even when

the number of measurements equals or exceeds the number of unknowns,

due to errors, the resulting equations are not all independent. To

supply more independent equations, relationships betweer the unknown

solution points can be assumed or assumptions about other properties

of the expected solution can be made.

If no constraints are available or if those available are insuf-

ficient, no solution with finite error bounds can be found. The

additional assumptions (constraints) can be mathematical (weighting

functions) or physical (additional assumed physical characteristics).

In some cases, the constraints can be hidden. As an example, Smith8

required that the solution be a linear combination of the weighting

functions, and Chanine ',1 used linear interpolation between the

unknown solution points (temperature at different elevations) as

7
noted by Rodgers. The constraints can be explicitly stated, as did

Twomey, 11,2 Fleming and Wark,13 Wark and Fleming, Herman et al.,15

and others.

The applicability of the constraint to a given problem is very

important because the additional set of constraint equations serves

112
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as virtual measurements. If the proposed constraints do not properly

describe the physics of the problem, to use them would be tantamount

to adding measurements with large errors. For example, if on a par-

ticular day the aerosol size distribution was a very erratic function

and a smoothing constraint was applied, the result would be two sets

of contradictory equations. The quality and type of the constraint

applied are reflected in the solution and make it nonobjective.

Frequently the solution, f(x), is used to calculate different prop-

erties of f(x) [i.e., moments of f(x)] or other derived properties as

an input for other models. Therefore, it is important to know how

sensitive the measurements are to these computed properties and the

standard deviation of the solution. If the measurements are not sensi-

tive to these properties, then these computed properties are not neces-

sarily appropriate for use in modelling. Analysis of the kernels can

give information about types of solutions and properties of the solu-

tions to which the measurements are sensitive, as will be shown later.

For those inverse problems for which there exists a large body of

observed solutions [distribution functions f(x)], such as temperature

soundings, ozone vertical distributions, etc., one can make use of this

large reservoir of observed "solutions" using the method of empirical
16-19

orthogonal functions. In this method, the observed information

is put into the form of a matrix from which the eigenvectors are deter-

mined. From these eigenvectors, a set of orthonormal basis functions

may be constructed, which are used as additional information to con-

strain the unknown solution to be composed of a linear combination of

these observed distributions. It is inherently assumed in this method

that the orthonormal basis functions formn a complete set.

12



For those problems for which we do not have any reliable library

of observed "solutions," e.g., when f(x) is an aerosol size distribu-

tion, the basis functions can be constructed from a library of mathe-

matical functions. Although these mathematical functions do not

describe existing functions f(x), they can produce orthonormal basis

functions from which many types of anticipated solutions can be con-

structed. These orthonormal basis functions will be called pseudo-

empirical orthogonal functions, as their source is from a library of

mathematical functions. Inherently assumed in the method is that the

library of assumed functions can be used in linear combinations to

yield any real function which describes the unknown f(x).

The approach of expanding an unknown function as a linear combi-

nation of orthonormal basis functions can be found in many mathematical

reference books. 20 ' 2  In this work, this approach will be applied for

solving the inverse problem.

1.2 Method of Solution

It is assumed that the unknown solution function f(x) can be con-

structed from a linear sum of orthonormal basis functions *(x) with

coefficients ai, i = 1,2 -*.. p,

p

f(x) = a ai~i(x) . (13)
i =1

The validity of this assumption will be discussed further on. The

coefficient set a. can be represented in matrix notation by a column
i

vector a(pxl) whose elements are ai. The basis functions oi(x), i

1,2 -.. p, can be written in matrix notation as a column vector 4(x),

(pxl), where each element is ýi(x) and x is a continuous variable. If

13



x is discretized (xi to x n), the basis functions can be written as an

matrix ý(pxn), while f is, as before, a column vector (nxl). By using

the above matrix notation, the unknown solution can be written as:

-T+
f = • a. (14)

Substitution of the expansion for the unknown f(x) [Eq. (13)] into the

basic Eq. (1) yields:

b p p b

gi f ki(x) 1 ajij(x)dx aj f k (x) J(x) dx (15)

a j=1 j=1 a

or in matrix notation:

9 = Aa (16)

where now the A matrix elements are composed of the various terms

of the integral on the right-hand side of Eq. (15), which are inner

products between the physical kernel of the problem ki(x) and the

mathematical basis functions 0j(x), which express assumed prior

knowledge about the unknown function f(x) such that

b

A.. :f ki(x)cj(x) dx . (17)

a

The condition number (the ratio between the largest and smallest

eigenvalues of ATA) is generally large and, as a result, the solution,

a (A A)- Ag and f a pTa, is unstable. This results from the fdct

that the number of unknown coefficients (ai) which are needed for the

approximation, Eqs. (13) and (15), is usually much larger than the

limited number of independent measurements. As a result, it becomes

14



necessary to employ additional sets of equations in the form of

constraints that express properties anticipated in the expected

solution.

The first constraint employed here is a smoothing constraint,

since f(x) is expected to be smooth for most low-resolution measure-

ments of g.. A smoothing constraint will also serve as a low-pass

filter that will reject high-frequency oscillations. Mathematically,

high-frequency components usually are nearly orthogonal to the kernels

and are therefore undesirable because they do not contribute signifi-

cantly to the measurements.

A second-order derivative of the solution with respect to x will

be used as a measure of smoothness, and the constraint applied will

be to minimize the sums of the squares of the second derivatives. In V

matrix notation, the smoothing operation can be written as:

a2f(x) =

ax2 a-

and
a f(xi) ,2-

axi 2  = a TT a q2 ' (18)2

where S is an operator (matrix), as derived by Twomey, which, when

applied to f = ITa, yields the second derivatives at each point.

Letting the matrix TS S = HSI the second-order smoothing matrix,

Eq. (18) can be rewritten as:

+T+

q2 = aHsa (19)

where q2 is a scalar parameter indicating the degree of smoothness of

the solution, f(x). As the numerical value of q2 becomes smaller, the

solution becomes smoother.

15
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The second constraint to be employed is the condition of non-neg-

ative solution points. Unlike the property of smoothness, which is

present in most but not all cases, positivity is a property that must

be observed at all times (e.g., when f(x) is the aerosol size distri-

bution: temperature profile, ozone amount, etc.).

The positivity property can be formulated if a function q 3 is

created such that

q3(xj) = f 2(x.) - yf(x.) y. > 0 (20)

where yj is the jth positive component of a suitably chosen vector to

be described later. Inspection of Eq. (20) and the graph in Fig. I

shows that the function q3(xj) results in a small magnitude for posi-

tive f(x.) and a large magnitude for negative f(xj). The slope for

negative values of f(x.) is much steeper than is the slope for posi-

tive f(x.). The function q 3 (x.) produces a minimum (a single minimum)

for a positive value of f(xj) = yj/2. The constraint of minimizing

the function q3 (xj) will push the solution toward yj/2, a positive

number since y. was clearly positive. Equation (20) can be written in

matrix form as:
+T -x ' - (21) T

q (i a OEiE jaE0j(1
33•

where E. is a column vector (nxl) in which all the elements are zero,

th
except for one in the ij element. Equation (20) is true for any point

x. so that there are n equations represented by Eq. (20) for all points

xi to xn,

The Euler-Lagrange method will be employed to solve the problem

where:

ýa+- +12 - q1 ' (22)

16
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where q is the residual sum of the errors squared between the com-
+~ + ý

puted n calculated from the solution f = • a and the data measurements

g, sibject to the constraints of minimizing q2 (Eq. 19) and of mini-

mizing n quantities (13 (x for the n equations represented by Eq. (21).

The inequality sign in Eq. (22) can be replaced by an equality sign,

and the problem becomes one of holding constant the quantity q"

q= (Aa - g)T(a* - *), (23)

subject to the constraints of minimizing q2 and q3 (j). The solution

for Eq. (23) and Eqs. (19) and (21) is the vector a, such that for

any i, i 1,2 -.. p,

qa + y q = 0 (2.•j

where ýS is the smoothing Lagrange multiplier and ypj is the j posi-

tivity Lagrange multiplier for f(x) at x..
"J+

In matrix notation, the solution for a (Eq. 24) can be written as:

n 1-'n L
÷ - 4T] Z. (25)

p i j 2i -

Equation (25) nay be simplified if the positivity constraint is applied

equally to each solution point xj, i.e., j= for all j's. Thus,

Eq. (25) can be rewritten as:

1,= TX + ýySrS + ypEjj ]J[• -p - . (26)

j=1 =

Let the positivity constraint matrix H be:

"p



n

H E (27)

j "

and the positivity constraint vector h (y) be: .
p

+ , n yj
hpky) = 2 Ej, (28)

j=1

where the y column vector (nxl) elements are yj, j = 1,2 -.. n.

Combining Eqs. (26), (27), and (28) yields the final form of the

solution to the basic Eq. (2)

+ +- +Xpp F
aSAA + S + -p I ~JT9 + - h()j(29)

and

+ -T

f = 0 a , (30)

where y and yp are undetermined Lagrange multipliers.

Equations (29) and (30) are solved by an iterative process. It

is assumed initially that any given x in f(x) is equally likely to

be present; therefore, a flat size distribution function will be used

as a first-guess solution for f. A first-iteration vector, y\(I = 2f, -5,'

is substituted in Eq. (29), where a first-iteration vector a(') is cal-

culated. A superscript denotes the iteration number. For the next iter-

ation f(2) is calculated from a through Eq. (30), and ;(2) f 1 "

[for positive elements in f(I)] is substituted in Eq. (29) to solve for

a second iterative solution a(2)

The process is repeated where the constraint equation, Eq. (20), is

used to force the solution f towards y/2 (all elements of y are positive)

so that any negative values for f(x) that may appear are encouraged to

19
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become positive in successive iterations by the positivity constraint.

The iteration process is stopped when all the f elements are positive

and the computed values of g from this solution agree with the measure-

ments for each yi within some predetermined accuracy. 4,

The significance of negative elements in the solution f snould

be checked by setting negative values to be zero to create a positive

vector f and then computing two measurement vectors from both solu-

tions. In cases where the two measurement vectors differ by less than
*

the errors, it can be concluded that the negative elements in f are

insignificant.

The numerical values of the undetermined Lagrange multipliers yS

and y are chosen for the iterative process as follows. When Eq. (29)

is used only with the positivity constraint (yS = 0), yp is chosen for

the iterative process such that ypH < AX and such that the ratio of

the largest to the smallest eigenvalues of the matrix (ATA + ypH ) is

minimal for y satisfying the first condition. This latter condition

decreases the relative error magnification.

If Eq. (29) is used with both Lagrange multipliers, Y, and yp, YS

and y were chosen such that YsHs ypH in order that both constraints ,

will affect A-T in Eq. (29), and the condition number of (A A ss +

Hp ) is minimal for ysHs + y p H T <

Finally, the limits [a,b] in Eq. () for the inversion process

should be chosen with care. Normally they are not known accurately,

and their choice can seriously affect the solution vector. The upper

limit [b] should normally be decreased if the iteration process cannot
+

produce both a positive f and an agreement between the computed measure-

ments and the input measurements.
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1.3 Standard Deviation of the Solution

Assuming that there is no error in the mathematical model and in

the basis functions, the effect of random noise in the measurements on

the standard deviation of the solution points will be estimated.

Following Frieden's 22 derivation for the least-squares problem,

Eqs. (29) and (30) are combined to give

1+ T-T r4.. -- ý -I [-T y

f [T AA + YsHs + YP j g + h (31)

Let the matrix D- be

[A A.T + YsHs + Y p] (32)

so that Eq. (31) can be written as:

+ + Y + ypp() (33)

where the circumflex indicates an estimation. The error in g is modeled
s 2) ste•

as a Gaussian additive noise such that gj = N(g., a. ), where g. is the

exact jth measurment and a.2 is the variance about gj and N represents

normal statistics. Taking the expectation of Eq. (33) produces:

DTfs + Y (3 A +

Subtracting Eq. (33A) from Eq. (33) yields:

~$ +
D(f - <f>) = A u (34)

where u is the error measurement vector whose elements obey statistics

of the form N(O,ai 2). Decomposing Eq. (34) yields:

1T
D i D(ý - d<f>) A j] A'u (35)j jI -',

In a similar way, Eq. (34) yields:

DA- <j')ZATi'uj' (36)
j , j ,
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Multiplying Eqs. (35) and (36) and taking the expectation of the

product yields (in matrix notation):

=A = A AA (37)

where i' is the covariance matrix of the expected solution f of which
fA

the elements are (rf)ij = <(<fi> - fi)(<fj> - f.)> and K is a diagonal

matrix of which the elements are the expected values of the variances

of the measurement errors ai2 Solving for the covariance matrixr

yields:
Af -T KT •- T (38)

where the identity (D-)T D ) was used.

The matrix rf may be determined from Eq. (38) with the matrix D

determined from Eq. (32). The square root of the diagonal elements of

the matrix pf are the standard deviation of the solution points.

The standard deviations of the expected solutions f are a result

of the mapping of error from the measurement space onto the solution

space. This mapping depends on the numerical value of the Lagrange

multipliers y S and yp (through the matrix D'), as well as the matrix

Qualitatively, it can be seen that, as the numerical values of

Y and y increase, elements of the - matrix become smaller so that

the standard deviations of the solution points decrease. The explana-

tion for this behavior is the fact that the model, including the basis

functions and the constraint equations, is assumed to be correct and

unbiased. Increasing y5 and y decreases the condition number of ATX

and thereby decreases the error magnification. However, as yS and yp

increase, the measurements computed from the solution will tend to
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deviate more from the data measurements. The behavior of the standard

deviation of f suggests that it is better to use as large a numerical

value as possible, consistent with the condition stated in Section 1.2

for y and y

1.4 Basis Functions

The basis functions are crucial to the solution process because

the solution [Eq. (30)] is a linear sum of the basis functions and

because the numerical quadrature matrix A [Eq. (17)] depends on the

form of the basis functions. Assuming a known distribution func-

tion n(x), the coefficients a. for the constructed distribution f(x)
1

[Eq. (13)] can be obtained by using the orthonormal properties of the

basis functions

b

a= f n(x)ýi(x) dx (39)

a

ppp

f(x) =i=I ai~i(x) (40)

Any solution f(x) obtained from an inversion process cannot be

closer (in a least-squares sense) to n(x) (the true solution) than the

solution constructed from Eqs. (39) and (40). The constraint equations

and the kernels can, at most, produce a coefficients set which is the

one calculated in Eq. (39), where the coefficients, ai, are computed

from the true solution, n(x).

The solution f(x) can be obtained from a set of basis functions

constructed from the kernel functions of the problem by a Gram-Schmidt

process. These basis functions will hereafter be referred to as
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natural basis functions because they originate directly from the prob-

lem. Another possible source for basis functions is empirical basis

functions, which will later be referred to as "pseudo"-empirical basis

functions.

When using natural basis functions in addition to a smoothing con-

straint, the solution f(x) ýill be the smoothest solution consistent

with the measurements which may be constructed from the basis func-

tions. When empirical basis functions are used, the solution f(x)

lies partially outside the function space of the measurements (kernels).

Therefore, the use of empirical basis functions may act as additional

information to the measurements. Conversely, the use of empirical basis

functions may eliminate many possible mathematical solutions for f(x).

However, the constraining effect of empirical basis functions can be

minimized if they are chosen in such a way that they lie in the func-

tion space of the anticipated distribution functions. Therefore, in

order to make use of empirical basis functions, some prior knowledge

about the anticipated distributions must be obtained.

1.4.1 NaturaL Basis Functions

Analysis of the natural basis functions can give an insight into

the inherent limitation of a solution obtained from the inversion

process solely from the measurements, when no additional information

is used. This analysis is important in order to determine what part

of the solution f(x) and its computed properties is a result of the

inversion process and of the additional information used, and what

part is a direct result of the measurements.

If the anticipated solutions are functions n(x), then the type

of solutions that can be inferred from measurements calculated from
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gi(y) f iki(x)n(x) dx can be computed from Eqs. (39) and (40), when

the kernels of the problem are u~ed to compute the basis functions
[i.e., the set *i(x)]. When an optimal set of kernels is used [i.e.,

a set of kernel functions which have maximum linear independency

between them], the reconstructed functions f(x) show the parts of

n(x) to which the measurements are sensitive.

The information about f(x), such as different moments of f(x)

(e.g., total number of particles, mean radius, total surface area,

and total volume, when f(x) is an aerosol size distribution) can be

obtained by an operation of a weighting function w(x) on f(x), i.e.,
b

fw(x)f(x) dx. The weighting functions w(x) for the quantities listed
a 2 3

above are, respectively, 1,x,x ,x . w(x) = x will result in a mean
b .

radius if f f(x)dx = 1. The process of deducing the various moments
a

of f(x) from measurements can be viewed as an approximation of the

appropriate weighting function w(x) by a linear combination of the

kernels for which the measurements have been made. 2  Thus, for a

general weighting function w(x):

m

w(x) a aiki(x) (41)

and b"

I w(x)f(x) dx aigi . (42)

a i=I

The degree of approximation for w(x) in Eq. (41) will be defined as:

b 1/2

f e2 (x) dx

q = -b- - (43)

f w2 (x) dx
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I.

where e(x) w(x) - w'(x) and w'(x) is the approximation to w(x) using

Eq. (41). If the approximation of w(x) results in a big error e(x),

the corresponding noinent of f(x) and the physical quantity it describes

cannot he recovered with much reliability.

An estimate of the error in deducing average quantities such as

average number density f(x), average x 2, and average x in intervals

Ax can be calculated if an appropriate w(x) is chosen. For an average

quantity xn between x and x w(x) will be
1 2'

n
x x < x <x 2

J xn dx

w(x) = xi (44)

0, elsewhere.

1.4.2 Empirpicat Basis Functions

In cases where the use of natural basis functions produces a less

than satisfactory result, it is appropriate to search for a set of

basis functions that will produce better results.

Given a set of functions fi(x), i = 1,2 -.. N, a set of basis

functions i(0), i = 1,2 -.. N can be constructed such that any of the

fi(x) functions can be obtained by using a linear combination of the

basis function set such as:

N

f i(x) I b ij i(x) . (45) ,,

~j=1

The basis functions p.(x) can be constructed from the eigenvalues and
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gi(y) f fki(x)n(x) dx can be computed from Eqs. (39) and (40), when

the kernels of the problem are used to compute the basis functions

[i.e., the set *i(x)]. When an optimal set of kernels is used [i.e.,
1

a set of kernel functions which have maximum linear independency

between them], the reconstructed functions f(x) show the parts of

n(x) to which the measurements are sensitive.

The information about f(x), such as different moments of f(x)

(e.g., total number of particles, mean radius, total surface area,

and total volume, when f(x) is an aerosol size distribution) can be

obtained by an operation of a weighting function w(x) on f(x), i.e.,
b

fw(x)f(x) dx. The weighting functions w(x) for the quantities listed
a

above are, respectively, 1,x,x 2 ,x3 . w(x) = x will result in a mean
b

radius if f f(x)dx = 1. The process of deducing the various moments
a

of f(x) from measurements can be viewed as an appr•oximation of the

appropriate weighting function w(x) by a linear combination of the

23kernels for which the measurements have been made. Thus, for a

general weighting function w(x):

m
w(x) a ai ki(x) (41) •

iil

and b b ~m

f w(x)f(x) dx aigi . (42)

The degree of approximation for w(x) in Eq. (41) will be defined as:

b 1/2

f e 2 (x) dx

a
q - (43)f ".

fw 2(x) dx

,a
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where e(x) = w(x) - w'(x) and w'(x) is the approximation to w(x) using

Eq. (41). If the approximation of w(x) results in a big error e(x),

the corresponding mloment of f(x) and the physical quantity it describes

cannot be recovered with much reliability.

An estimate of the error in deducing average quantities such as

2 3
average number density f(x), average x , and average x in intervals

Ax can be calculated if an appropriate w(x) is chosen. For an average

quantity xn between x, and x2 , w(x) will be

n
---x x < x < x

In dx

w(x) = x (44)

0, elsewhere.

1.4.2 Empirical Basis Functions

In cases where the use of natural basis functions produces a less

than satisfactory result, it is appropriate to search for a set of

basis functions that will produce better results.

Given a set of functions fi(x), i = 1,2 -.. N, a set of basis

functions p.(0), i = 1,2 ... N can be constructed such that any of the

f.(x) functions can be obtained by using a linear combination of the

basis function set such as:

N

fibx) = bij(x) . (45)

The basis functions p.(x) can be constructed from the eigenvalues and
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eigenvectors of the covariance matrix C (NxN) (Twomey, pp. 139-143)

formed from the original set of functions fi(x), such that

b

Cij: f fi(x)f 3 (x) dx . (46)

a

The orthonormal basis functions from the set fi(x) are

Si(x) -/2 =. F(x) (47)

where Xi and .i are the ith eigenvalue and eigenvector, respectively,

of the matrix C, and F(x) is a column vector (Nxl), the elements of

which are continuous functions fi(x), i = 1,2 ... N. If p basis func-

tions, where p < N, are used to represent the N functions f(x) in

Eq. (45), then the overall fraction of the N functions f(x) accounted

for by the p basis functions is

p /N

Ix ~X j I X (48)

j=:I j =1

In principle, there are two sources for a library of functions f(x).

The first source might be from many measurements of f(x) that were col-

lected over the years, but this type of library is not always available.

The second source for a library model of f(x) functions can be obtained

by simulating many functions f(x) according to theoretical models.

The set of basis functions for the expansion of f(x) in Eq. (30) is

not unique. For example, any two orthogonal unit vectors rotated in an

arbitrary angle to the x axis can describe a vector in the x-y plane.

Similarly, but in the function space, the nonuniqueness is also true

for the orthogonal empirical basis functions.
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The criteria for checking a proposed empirical basis function set

are: first, that they should be able to construct as many types of the

desired functions f(x) as possible; second, that their orientation will

be such that the greatest amount of the m-dimensional function space

of the kernels ki(x), i = 1,2 -.. m will be within the p-dimensional

function space of the basis functions .i(x), i = 1,2 .-. p; and third,

that the basis functions should be able to construct as closely as

possible a chosen delta Dirac function. A minimal spread in the con-

struction f(x) should result from using basis functions, and any uncer-

tainty about the location x of the solution number density f(x) should

be minimal.

Because the required properties of the basis functions are known,

it is possible to construct a library source from mathematical func-

ti'ons f(x) that do not describe existing distributions f(x) but can

yield the desired basis functions. If the resulting basis functions

fulfill the criteria stated above, these basis functions can be used

for the solution of Eq. (1). The resulting basis functions from

the mathematical function library are called the "pseudo"-empirical

orthogonal functions.

For the case where f(x) is an aerosol size distribution, the

library of the source functions f(x) was chosen to include normal

distributions, spaced uniformly every 0.15 um between integration

limits [a,b] and with a standard deviation of 0.2 pm, and few

Junge-type distributions f(x) = x-(V+1), where the v values are

1, 2, 3, 4, and 5. The computed basis functions were able to simu-

late many anticipated aerosol size distributions with a very good

24
accuracy.
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The orientation of the empirical basis functions relative to the

kernel functions determines the numerical quadrature matrix A. The

components of the basis functions which are nonorthogonal to the

kernels will determine to what extent measurements computed directly

from f(x) [Eq. (1)] will agree with measurements computed from the r

coefficient vector A and the matrix A [Eq. (16)]. The fraction of

the basis functions which is orthogonal to the kernels determines the

amount of information about the unknown f(x) distribution which cannot

be obtained through the measurements.

The portion of the kernel ki(x) for measurement i which is within

the function space spanned by the p basis functions can be calculated

by Eq. (49).
2• 1/2

P ki(x)ý (x) dx]

qi= b -i = 1,2 .-. m (49)

f ki 2 (x) dx.
a

The portion of the basis function j which is within the function space

spanned by the kernel functions can be calculated by

m b2' 1/2

1 Pi(X) j(x) d

q b j = 1,2 * p . (50)

f j2 (x) dx

where pi(x), i = 1,2 ... m, are orthonormal basis functions constructed

from the kernel functions by a Gram-Schmidt process.

The approximation of f(x 0 ) as a linear sum of the basis functions

results in some uncertainty as to the location of the point x0 in the
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f(xo). This uncertainty can be written as

p
f(xo - Ax = &j ai i(xo) , (51)

i =1

where Ax0 is the uncertainty in the location x0 for f(x) at x.. The

magnitude of the uncertainty Axo can be estimated by substituting a

very narrow function at x0 for n(x) in Eq. (39) and constructing the

approximated f(x 0 ) [Eq.(51)]. The limit of a very narrow function is

a delta function. In numerical form, the delta function may be approx-

imated by a normal distribution with a very small standard deviation.

Using an empirical basis function is equivalent to changing the

kernels ki(x) to empirical kernels Bi(x). This can be seen when the

equations g : Aa [Eqs. (16), (17)] and a * ( T T)- _ f [obtained from

Eq. (14)] are combined to yield:

9 A(ý ' f (52)

or

Bf (53)

where B = A-~ ) @. If the B matrix is computed for very fine xi

intervals, the trapezoidal rule for integration is a good approxima-

tion, and Eq. (52) can be assumed to be nearly equal to the integral

form, given by b

gi= Bi(x)f(x) dr (54)

a

where R,(x) are the rows of B.

The unknown solution f(x) is a linear combination of basis func-

tions constructed from the empirical kernel Bi(x). As a result,

similar analysis of the properties of the retrieved solution can be

performed on Bi(x), as was described for ki(x).
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1.5 Summary

A method for solving the inverse problem was derived. The method

uses a library of functions from which a set of orthogonal basis func-

tions is computed. The source of the library can be from a set of obser-

vations or a set of mathematical functions, in which case the basis

functions are pseudo-empirical orthogonal functions. It is assumed that

any unknown solution f(x) may be constructed from a linear sum of these

functions. The problem then becomes one of solving for the unknown coef-

ficients of the basis functions. A solution with a smoothing constraint

and/or a positivity constraint can be obtained. A solution with the pos-

itivity constraint alone can be useful when the unknown is known to be

a narrow function or an unsmooth function. Analysis of the information

contained in the measurements and the effect of using additional infor-

mation is given. This type of analysis is important in order to be able

to use the solution properly.
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2. APPLICATION

2.1 Introduction

Information about the aerosol size distribution is important in

many different areas of the atmospheric sciences, principally due

to their effect on optical phenomena and radiative transfer processes.

These effects depend on several factors, such as wavelength of the

incident radiation, refractive index of the aerosol material, and size

distribution of the aerosols.

Given that a priori knowledge exists about the refractive index,

with some minimal assumptions about the expected aerosol size distri-

bution, measurements of scattered radiation can be used to obtain

information about the aerosol size distribution under conditions of

independent scattering (i.e., where no permanent phase relation exists

between the radiation scattered by two different particles) and where

the scattered radiation that undergoes more than one scattering event

is negligible (i.e., an optically thin scattering volume).,

In the last decade, many methods for inferring aerosol size dis-

tribution from optical remotely sensed measurements were developed.

5-11
They include spectral extinction measurements, aureole and forward

12-I? "

scattering measurements, combined scattering and extinction mea-

18 19 20surements, ' angular scattering measurements, and backscattered

measurements. 2-23 In all of the aforementioned methods, a wide diver-

gence in the accuracy claimed may be observed. A critical review of

some of these methods can be found in Deirmendjian..

The aerosol size distribution inferred from solar extinction and

solar aureole measurements represents an average size distribution for
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the whole atmospheric depth. The aerosol size distribution obtained

from backscattering measurements of a pulsed lidar system is a local

property of a scattering volume that can be as small as a few cubic

meters at a height z. The inferred aerosol size distribution

depends on the assumed refractive indices and radii limits of the

aerosols for all methods of solution, as well as the inherent assump-

tion that the particles are spherical in shape. The solution obtained

from aureole and extinction measurements is less sensitive to the

assumed refractive indices than the one from backscattered measure-

ments. The refractive indices used for aureole and extinction tech-

niques should represent some type of average refractive index for the

particulates throughout the vertical extent of the aerosol column.

It has been determined that the backscattered spectral measure-

ments contain more information about the particle size distribution

than do extinction, aureole, and angular scattering measurements. 2 6 ,

This study investigates the possibility of inferring aerosol size dis-

tributions from simulated backscattered measurements, such as would be

obtained by monostatic lidar.27 ' The results and features of the

analyses for the maximum accuracy in the inferred solution (assuming

spherical shape and known refractive indices) can set an upper limit

for accuracy on any solution inferred from spectral extinction, aureole,

and angular scattering measurements. It will be assumed that all wave-

lengths between 0.3 pm and 10.6 pm (in intervals of 0.1 Pm) are avail-

able for measurements. The aerosol is taken to be a tropospheric,

spherical rural aerosol with radii limits from 0.05 to 10.0 pm, for

which the residence time is about a week. The wavelength dependent

refractive indices are taken from Kent et at. 28
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Inversicns of backscattered radiation were obtained by Capps et

ato 21 in which the solution was constructed from the basis functions

of the backscattering kernel. This method does not use any constraints

on the solution, and therefore the solution can be oscillatory and

negative, even for the very narrow radii limits that were ised (0.001

to 1.3 pm). Zuev and Natts22 use an iterative technique to determine

the refractive indices and the size distribution function from multi-

wavelength extinction and backscattering cross-sections which are

inferred from monostatic lidar measurements. The accuracy of their

method (in the atmospheric boundary layer, z < 1 km) is stated to be

no greater than twice the error in the measurements (using ruby and

neodymium and their second harmonics as laser sources). Ben-David and

Herman23 use an iterative technique where an initial guess is built

into the kernel function. By successive iterations, a correction vec-

tor is calculated and a solution is constructed subject to a smoothing

constraint in tl- solution.

In this work, the psuedo-empirical orthogonal function method 2 9

is used for inferring size distribution of spherical aerosols with

assumed refractive indices. The method uses empirical basis func-

tions from which the solution is constructed subject to a constraint

for non-negative solution points and additionally (optionally) to a

smoothing constraint upon the solution. The properties, limitations,

and accuracy of the method will be shown, along with examples of

inversion results for four data sets. Possible applications for the

inferred aerosol size distribution will be discussed.

?.2 The Inverse Problem

In a typical monostatic lidar, a pulsed las_Žr is transmitted in
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a narrow beam, and a receiver telescope is co-aligned to collect the

radiation scattered in the backward direction. The received lidar

response may be described in terms of the lidar equation 2 5

R r

P X(R,t) = P.o(t) C'/R 2 a,(R)exp 2 f ox(r)d (55)

0

where PO(R,t) is the power received at time, t, from distance, R, and

PX0 (t) is the transmitted power, and C' is the instrumental calibra-

tion factor. The term (R) is the volume backscattering cross-

section, and a X(R) is the volume extinction coefficient, both at wave-

length X and range R. Assuming the measurements of P X(R,T) are made

at optically thin ranges, R, we may neglect the attenuation term in

Eq. (55). Then b

P (R,t) = Ca(R) = C J K,(r,m)f(r)dr =g (56)

a
where

C = CI/R 2 x.C/ xpxo(t) .,
X0,

K (r,m) is the particle backscattering cross-section for radius r and,

with refractive index, m (to simplify the notation, the dependence of

the kernel on the refractive index will be omitted), and f(r) is the

number of particles of radius r per unit volume per unit interval in

r. The measured backscattered flux PX(R,t) at wavelength X will be

referred to as g, to put the notation into the more usual form. If

Eq. (56) is written in numerical form, it )ecomes

g =Af (57)

where g is an ;nxl column vector whose elements are the backscattered

flux at it rn wavelengths, A is an mxn 9atrix composed of the particle

32, 1

J.1



backscattering cross-sections for the various wavelengths and radii

intervals and also contains any numerical quadrature required in addi-
+

tion to the constant C, and f is the unknown nxl column vector whose

elements are the number densities at the n discrete radii. For the

remainder of this work, we assume that the measurements, g., are given

and examine the feasibility and accuracies obtainable in inverting the

measurements to obtain the unknown f(r). In addition, we introduce a

new inversion approach through the use of pseudo-empirical orthogonal

functions to describe the unknown f(r) and also introduce a positivity

constraint which helps insure that the values of f(r) so obtained are

not physically unreal negative numbers.

To see the difficulties of solving Eq. (56) or its numerical equiv-

alent, Eq. (57), it should be noted that the measurements gA are actu-

ally equal to inner dot products in the function space (Hilbert space)

between the kernels kY(r) and the unknown function f(r) in Eq. (56) or

equally dot products of the row veqtors of the A matrix, Ai(j) with
w

the unknown column vector f (i.e., gi =•Ai f.)'
13 3

The above geometrical viewpoint of Eqs. (56) and (57) addresses

the inverse problem thusly: given m projections, g., of an unknown

function (vector) f(r) on some set of m skew functions (vectors) k,(r)

to construct the unknown function (vector) f(r). As as result of the

erratic fine structure of the kernel (Fig. 2), a large number of solu-

tion points n must be taken so that the integral in Eq. (56) can be

evaluated. Hence, there are in equations and n unknowns where n may be

larger than m (n is usually on the order of 50, and m is on the order

of 10).
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Figure 2. The backscattering cross-section.

40 ,

.4

".•L',.',".%•.-\•'.'%'.''•.•.••'..'.%•.\%'- t.''-' " ,', '..,-."- ".-',"--"••%'.';•._.•'L...'. - ",,. .. "." -'-"•-'•'.•.r'•".'#..-- .. t..- U-,



2.3 The Information Available in the Measurements

2.3.1 Independence of the Kernel Functions

An analysis of the kernels ki(r) of the inverse problem can give

an insight into the information available in the measurements about

the unknown aerosol size distribution. This analysis utilizes results

from the previous work by the authors. 2 9

Recent developments in laser technology make available a wide

range of wavelengths. 2 5  In order to examine the theoretically maximum

information content possible, we assume all wavelengths between 0.3 Pm

and 10.6 Pim in intervals of 0.1 pm may be used.

One hundered and four wavelengths between 0.3 Pm to 10.6 Pm were

thus selected and the backscattering cross-sections computed for each

wavelength as a function of size and refractive index of the rural

tropospheric aerosol. These functions were used as kernels ki(r).

i = 1,2,...104, and were arranged in order of maximum independency

between them. The independency within the kernel functions was mea-

sured as the maximum orthogonality between kernel i and all the other

kernels j * i.

The interdependence between the kernels 3 0,31 ki(r), i = 1,2,..-m,

can be demonstrated as follows. In principle and from a purely mathe-

matical point of view, two or more of the kernels are linearly depen-

dent if there is a set of coefficients ai, i = 1,2,--.m, such that

m
a i k.(r) = 0 (58)

and

ii

in order to eliminate the trivial case.
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In a real physical situation, there are uncertainties in the mea-

sured quantities or in the mathematical model. In this situation, a

linear combination of the kernels that results in the right-hand side

of Eq. (58) equalling some value e, c > 0 but less than the uncertain-

ties involved, is no better than a zero value and is equivalent to

linear dependency between two or more of the kernels.

If it is assumed that the uncertainty in each wavelength i is

Eq. (58) can be written as:

m
C% ziki(r) + at.E.(r) : q (59)

i=1 1 1 •

m

or in vector notation

+k +T)+ =

-).T+

+a a

where the k vector elements are ki(r), the a vector elements are the
1

coefficients a., and the e vector elements are ei(r) that give the

uncertainty in the measurement gi or represent uncertainties in the

physical model (single scattering approximation, refractive index

uncertainties, and so forth), and the superscript T denotes a trans-

pose operation.

The quantity to be minimized is

12 T1+ + *T +1
Iq2 : (k + e)(k + c )a (60)

÷T÷subject to the constraint a =1.
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If the expected value of <Iql> (where <1.1> denotes an averaging
process) is taken and a Gaussian additive noise for E. is assumed,

such that 22s. = N[O, P~k.(r)]
1 1

where N represents a normal statistic about zero mean and a variance

Pk(r), Pi is the fraction error in ki(r) and <k.0 > = 0, Eq. (60)

yields:
(q 12> = T aT h+ T (61)

where A is a diagonal matrix whose elements are

b

Aii f 2 f 2 (r) dr.

a

Eq. (61) can be written symbolically as <(q 21> = q, + q2 " The minimum

of q, is the smallest eigenvalue, min' of the matrix C whose elements

are

b

Cij =f ki(r) kj(r) dr,

a

b

f k2(r) dr = 1 (Twomey32, p. 189)

a

and
m

is i: PI
q2' i 1

Finally, Eq. (61) yields

<Iq{> 2 =Xmln (of C) + i p..

The maximum value of q 2 can be calculated from Schwarz's inequality:
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m 2m m
i =I P2 < a 2 P2 =mP2 .4

"2
(if we assume all P. = P). Hence, if Amin > mP , the m kernels are

independent. To ensure a signal-to-noise ratio of 10, the condition t

for independence of m kernels which contain an error of magnitude P

will be set at

X.min = 10 mP2 . (62)

The covariance matrix C was computed for various numbers of wave-

lengths. The covariance matrix' eigenvalues were analyzed [Eq. (62)]

to obtain the number of wavelengths that yield independent measurements

with some predetermined measurement accuracy. Results are shown in

Table 1.

Table 1. Number of independent wavelengths

(measurements) and minimum accuracy needed

in the measurements. 4.

.'

Number of Wavelengths Accuracy [%]

40 0.5

35 0.85

30 0.9

25 2.0

20 2.25

15 2.7

5 4.7.'
44

44 r

".4

.1.



2.3.2 Information of Unknown Size Distribution Contained in the Kernels

Direct measurements of aerosol size distributions show that the

aerosol size distribution, n(r), can be approximately described by a

log normal distribution and a power law, n(r) = cr-V size distri-

bution. 36-39

These distributions are recoverable from the medsurements only

if they are within the function space spanned by the kernels [i.e.,

Eq. (56) or Eq. (57)]. To examine the extent to which expected size

distributions, n(r), lie within the function space of the kernels,

the following procedure was followed. A set of orthonormal basis

functions (referred to as "natural" basis functions in the previous

work) was constructed from the set of kernels. Expected size distri-

bution functions, n(r), were then constructed from combinations of

the basis functions. These reconstructed distribution functions,

f(r), were then compared to the original n(r) to determine the degree

to which the f(r) lie within the space of the kernels.

Figures 3a-f show results of log-normal functions, n(r), and

the constructed functions, f(r), calculated by using 40 natural basis

functions. The parameters for the log-normal n(r) (standard variation

and mean radius) are shown in the figures.

Examination of these figures shows that, while some size dis-

tribution functions, n(r), are reproduced reasonably well by the basis

functions (i.e., Fig. 3c,d,e,f), others are very poorly reconstructed

(i.e., Figs. 4a,b,c,d, and Fig. 3a). Thus, it is evident that some

size distributions, most notably power law types (Figs. 4a-d) and

very sharply peaked and narrow log-normal types (Fig. 3a) lie prima-

rily outside of the function space of the kernels (i.e., they possess
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Figure 3. Reconstruction of size distribution f(r) from log-normal
size distribution n(r), using 40 natural basis functions.
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large components which are orthogonal to the kernels) and therefore

measurements between 0.3 and 10.6 Pm contain limited information as

to their form.

An estimate of error in deducing average number density in radii

interval Ar = 0.5 Pm can be calculated by approximating a weighting

function w(r) 29 ' Eq. 44 from the 40 kernel functions. This error

was calculated to be 80%.

2.4 Additional Information Contained in the Pseudo-Empirical

Orthogonal Functions

A brief review of the method of solution using pseudo-empirical

functions29 will be given before examining the pseudo-empirical orthog-

onal basis functions used in this work and presenting results of the

inversion process.

In the following work, basis functions constructed from a matrix

whose elements are composed of a set of mathematical functions (normal

and power law functions) are employed, as opposed to the natural basis

functions constructed from the kernels as used in the previous section.

These basis functions are referred to as pseudo-orthogonal basis func-

tions.

Assuming that the unknown solution f(r) can be constructed from

coefficients aj and basis functions *j(r), Eq. (56) can be written:

gi= 3ki(r) a (r)dr,

or, in matrix notation:

S= (63)

where A is a matrix whose elements are:

Aij = fki(r) pj(r)dr, (64)
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and a is the unknown coefficient vector from which the solution f(r)

is constructed, i.e.,

f(r) = a. 4j(r) (65)

and g is the measurements vector.

A direct solution of Eq. (63) is almost always unstable. For the

present method, two types of constraints on the solution are employed

in order to solve Eq. (63). The first constraint is a smoothing con-

straint, 40 such that:
a f(r.)

2 mi , (66)

i ar. 2
1

as the solution is usually expected to be smooth and to filter out

artificial oscillations in the solution. The second constraint is a

"positivity" constraint, such that f(ri) > 0 for any ri, as all so~u-

tion points must physically be positive.

The positivity constraint is employed in an iterative manner. An

initial first-guess distribution, y(r), that is positive for all r is

used to start the procedure. The expression

21 (i)q = f (r) - y(r) f(r) (67)
(1)

where f(r) is the first iterative solution, is then minimized as the

positivity constraint. For any value of y(r), the minimum value of q

is -y(r)/4, for which f(r) = y(r)/2, a positive number. This con-

straint tends to force the solution toward y/2 for the first iteration.

The degree of forcing depends on the strength given to the constraint.
(1)

For the next iteration, y(r) is set to be equal to 2 f(r), and the

process is repeated. Any negative values of f(r) which nay appear are

encouraged to become positive in successive iterations.

50



Using the method of Lagrange multipliers, the final solution employ-

ing both constraints is given by:

+ VT-- - *

a [A A + y H + y Hp-I [ATg + yph (y)1 (68)s s p p p p

and

f(r) = • ai~i(r) (69)

or
+ +
f =a (69a)

where H and H are constraint matrices arising from the minimizationp s
+ +

criteria, h (y) is a positivity constraint vector which is a func-"
p

tion of y, ys and y are the Lagrange multipliers which determine the

strength of the smoothing and positivity constraints, and p is a matrix

whose rows are Oi(r). T denotes a transpose operation, as before.

The standard deviation of the solution is the square root of the

diagonal elements of the matrix r. , where
f

6^ = O XITAAT 0ý-')T (69b)f

and

+- -T A-X1 H -y H
s 4s -Y4pp

and A is a diagonal matrix whose elements are the expected values of

the variances of the measurements errors.

The basis functions cj.(r) can be constructed from the eigenvalues

and eigenvectors of the covariance matrix ý (NxN) (Twomey, 32 pp. 139-

143) formed from the original set of funct;-ns fi(r), such that

b

Cij f fi(r) fi(r)dr (70)

a
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The orthonormal basis functions from the set fi(r) are given by

ýi(r) = Xi- uT F(r) (71)

where X. and ui are the ith eigenvalue and eigenvector, respectively,

of the matrix ', and F(r) is a column vector (Nxl) the elements of

which are continuous functions fi(r), i = 1,2...N.

Figures 3 and 4 showed that the use of natural basis functions

produces a less than satisfactory result. Therefore, it is logical

to search for a set of basis functions that will produce better

results.

The criteria for checking a proposed empirical basis function set

are: first, that they should be able to construct as many types of

aerosol size distribution functions as possible; second, that their

orientation will be such that the greatest amount of the m-dimensional

function space of the kernels ki(r), i = 1,2...m will be within the

p-dimensional function space of the basis functions ci(r), i = 1,2...p;

and thirdly, the basis functions should be able to closely approximate

a chosen delta Dirac function, in order that a minimal spread in the

construction f(r) results from using the basis functions, and any

uncertainty about the location r of the solution number density f(r)

It is standard procedure to compute basis functions from a large

library of actual, measured functions. However, in the present case,

since an adequate library of measured aerosol size distributions does

not exist, we construct a "library" based upon expected forms of the

unknown distributions, i.e., the f(r) functions hence, the name

"pseudo"-empirical orthogonal functions.
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The library of the source functions f(r) was chosen to include

68 functions (Figure 5). Sixty-three functions were very narrow

normal distributions, spaced uniformly every 0.15 um between 0.2 pm

and 9.5 Pm and with a standard deviation of 0.2 Pm. The remaining

5 functions were chosen to be Junge-type distributions f(r) = r-(V+1)

where the v values are 1, 2, 3, 4, and 5. All 68 functions were cal-

culated for a radius range between 0.05 pm and 10 wm. Although the

first 30 basis functions can account for 99% of the overall variation

of the 68 functions, the errors resulting in the measurements computed

from the constructed Junge-type distributions and the measurements

computed from the actual Junge distributions were of several orders of

magnitude. Most of the information about Junge-type distribution is

contained in the last few basis functions. Therefore, all 68 basis

functions computed from Eq. (71) are used.

In principle, a larger set of source functions will result in a

better quality of basis functions according to the specified proper-

ties mentioned above. This source set of equations will work if the

normal distribution functions are as narrow as possible and if there

is an overlap between the functions so that the resulting basis func-

tions will be continuous functions. However, as the set of normal

source functions becomes more numerous, more basis functions are

required in order to approximate Junge-typ3 distributions and their

measurements. Hence, the dimension of the A Tmatrix will be bigger

and the computation time needed for the iterative process will

increase considerably. Furthermore, the larger the set of source

functions, the smaller the smallest eigenvalues become, resulting

in poor accuracy in computing the basis functions in Eq. (71).
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Figure 5. The "Pseudo"-empirical functions f(r).
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Therefore, an optimal number of functions must be determined which

is as large as possible and still allows accurate determination of

the smallest eigenvalues. Based on the factors heretofore described,

the basis functions chosen represent an optimized set.

Figure 6a-e presents results of reconstructed aerosol size dis-

tributions f(r) from various aerosol size distribution models n(r)4 1

that differed from the original source functions. The reconstructed

distributions were calculated from the pseudo-empirical orthogonal

functions from the equation

p
f(r) = y ai~i(r) (72)

i =1

where

b

ai = j n(r)i .(r)dr (73)

a

The solid curves are the analytic models, n(r), and the symbols repre-

sent the reconstructed f(r). It can be seen that, in most cases, the

symbols fall on the solid curves, which is to say that f(r) =- n(r).

Figure 6a represents reconstruction of various log-normal distri-

butions given by
1/2 2 n2

n(r) = 1I/(2) exp[-1/2 (In r - In r) /ln a] (74)

which is believed to represent the size distribution function for

aerosols having soil-derived components. Figure 6b shows recon-

structions of various Junge-type distributions given by

n(r) = r"(v+l) (75)

which was proposed by Junge to represent continental aerosol. The
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Figure 6. Reconstruction of size distribution f(r) from dero-
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10 PRRPMETERS FOR SIZE OISTRIBUTIONS
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Figure 6 (continued).
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numerical values for v are different from the numerical values in the

source function set (Figure 5). An inspection of Figure 6 reveals that

when n(r) changes more than 7 orders of magnitude, the constructed

distribution f(r) (symbols) deviates from n(r) (solid line). However,

measurements computed from the two distributions agree within 5%. In

cases where a significant contribution to the measurements is from

number densities with a dynamic range of more than seven orders of

magnitude, the computed measurements from f(r) will deviate signifi-

cantly from measurements computed from n(r).

In Figure 6c, n(r) is a regularized power law distribution given

by p- P3]p4
n(r) = PI/P 2 [(r/p 2  -1]/[1 + (r/p 2 ) (76)

where p1 through p4 are constants. This distribution is similar to

the Junge-type distribution at large radii, but does not have a singu-

larity at r = 0.

In Figure 6d, n(r) is the so-called modified Gamma distribution,

given by

n(r) = plrP2exp(-p 3r p) (77)

where the constants p1 through p4 determine various models of aero-

sols such as Haze H, Haze M, Haze L, and cloud C.1 to C.3 used by

42
Deirmendjian.. Because the Haze models (L and H) range to more than

40 orders of magnitude for the radii range 0.05-10.0 on, only the

cloud C.1 to C.3 are presented.

In Figure 6e, n(r) is the so-called inverse modified Gamma distri-

bution, given by

n(r) pIexp(-p 3 /r P)/rp2 (78)
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which describes exponential fall-off at small radii and power law

behavior at large radii. This type of distribution can represent dry

aerosol s.

The fraction of the basis functions which is orthogonal to the

backscattering kernels determines the amount of information about the

unknown aerosol size distribution which cannot be obtained through the

measurements.

The portion of the kernel ki(r) for wavelength Ai which is within

the function space spanned by the p basis functions can be calculated

by Eq. (79):

"P [k(r)..(r) d] 1/2

qi b i = 1,2 -.. m . (79)

b

ki 2(r) dr
a

The portion of the basis function j which is within the function space

spanned by the backscattering kernel functions can be calculated by

Eq. (80),:

m b( 2d 1/2

q. b b j = 1,2 ... p . (80)

fa 2(r) dr

where Pi(r) = 1.2...m are orthonormal basis functions constructed from

the kernel functions.

Figure 7a shows the portion of ki(r) which is within the function

space of the "pseudo"-empirical basis functions. It can be seen that,
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on the average, no more than 10% of the kernel ki(r) is orthogonal to

the basis functions. Figure 7b shows that about 50% of the function

space of the basis functions is outside the kernel function space.

Thus, the basis functions contain most of the information within the

kernels and also add additional information about the anticipated

aerosol size distributions.

The approximation of f(ro) as a linear sum of the basis functions

results in some uncertainty as to the location of the radii ro in the

number density f(r 0 ). This uncertainty can be written as

p
f(r 0 + Ar0) = i ai.i(ro) (81)

i=1

where Ar0 is the uncertainty in the location r0 for the number density

at r0. The magnitude of the uncertainty Ar0 can be estimated by sub-

stituting a very narrow function at r 0 for n(r) in Eq. (72) and con-

structing a number density function [Eq. (81)]. The limit of a very

narrow function is a delta function. In numerical form, the delta

function will be approximated by a normal distribution with a standard

deviation of 0.01 um.

The results of constructing 10 functions [Eq. (81)] from 10 delta

functions centered at various locations r 0 are given in Figure 8,

where it is shown that the uncertainty Ar0 is about 0.25 pm, and the

locations ro are exactly at the locations of the original delta func-

tions. Figure 8a shows one of the constructed delta functions of

Figure 8.

In order to estimate the error in deducing average number density

in radii interval Ar=0.5 in, a weighting function w(r) was constructed

from the kernels which contain the additional information from the
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Figure 8. Approximation of delta functions by using
the "pseudo"-ernpirical basis functions.
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Fig. 8 using the "pseudo"-empirical basis functions.
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pseudo-empirical functions [Bi(x)]. 29, Eq. 54 This error was calcu-

lated to be 50%. In Section 2.5, it will be shown (Fig. 9) that this

estimate is a realistic estimate, and results of inversions performed

with pseudo-empirical basis functions will be reported.

2.5 Results

Simulated measurements of backscattered radiation and refractive

indices were provided for 15 wavelengths (between 0.2 pm and 9 Wm) and

for four aerosol size distributions (denoted by data sets G, H, I, and

J). (Dr. J. Bottinger, private communication) These measurements were

perturbed with various random errors which were normally distributed

with a standard deviation of 10%. In this section, inversions for

these four data sets will be performed along with analyses of the

inversion results.

Figures 9a-d show the results of the inversion for data sets G, A

H, I, and J. In these figures, pseudo-empirical orthogonal functions

were used to obtain two solutions for each data set. The first solu-

tion was obtained using the positivity constraint only (yS = 0). This

solution is denoted SOL.1. For the second solution (SOL.2), both the

positivity and the smoothing constraints were used. The dashed line

(no symbols) represents the true solution for each of the four data

sets. Figure 10 shows the provided simulated measurements for data G

and the computed measurements from SOL.1 and SOL.2 from Figure 9a,

all of which are a function of wavelength. The other solutions shown

in Figure 9b-d reproduced the simulated measurements equally well

and are not shown here. Figure 11 shows the iterative process used in

solving Eq. (68) for data set I. The residual error (the difference
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between the simulated measurements and the computed measurements from

the solution f) and the number of negative solution points converge

toward zero as the iteration number incredses. The residual error is

considered to be zero when the computed measurements are within 10% of

the simulated measurements. (The simulated measurements contained 10%

random errors.)

An inspection of the solutions presented in Figure 9 shows that
4.

SOL.l differs greatly from SOL.2, but both can represent a real aerosol

size distribution (i.e., no negative aerosols), and both reproduce the

simulated measurements equally well. SOL.2 contains a smoothing con-

straint on the unknown solution. An inspection of SOL.2 with reference

to the true solution in Figure 9 reveals the assumption of smoothness.

In Figure 9a, SOL.2 describes very well the true solution, which is

smooth. In Figure 9b, the smoothing constraint forces SOL.2 to be

much wider than the true solution. In Figure 9c, it may be noted

that, for radii less than 1.5 wm, the smoothing constraint does not

allow SOL.2 to reproduce the narrow peak at 1.0 Pm. For radii larger

than 1.5 pm, the true solution is nearly a straight line for which the

second derivative is zero. In this part of the curve, the assumption

of smoothness is accurate and is reflected in SOL.2. SOL.1, which was

obtained by assuming only that f(r) > 0, preserves the width of the

true solutions, as can be seen in Figures 9b-d. This type of compar-

ison between the inversion solution and the true solution is possible -

only for simulated measurements. If both solutions, SOL.1 and SOL.2,

were obtained from real measurements, both would be equally plausible.

The aerosol size distribution is often an input parameter in

radiative transfer models and climate models and in other models for
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atmospheric physics. The optical properties which are of interest for

these models are: total scattering, absorption and extinction cross

sections, single scattering albedo. and phase function of the aerosol

size distribution. Figure 12a shows the ratio of computed optical

properties from SOL.1 and SOL.2 for data G as a function of wavelength.

From the figure, it can be seen that the difference between the com-

puted optical properties from SOL.1 and SOL.2 (in Fig. 9a) is less than

10%. Figure 12b shows the ratio of computed phase function for three

wavelengths from SOL.1 and SOL.2 for data G. The phase functions com-

puted from SOL.1 and SOL.2 differ by less than 20%. Results of compu-

tation of ratios for the same optical properties for solutions for data

sets H, I, and J are similar to Figures 12a and 12b and are not shown.

Physical properties such as average radius, total mass, total

area, and average number density were computed for all solutions pre-

sented in Figures 9a-d. The ratio of computed physical properties from

SOL.1 and SOL.2 for each data set is shown in Figure 13. The differ-

ence between computed physical properties for SOL.1 and SOL.2 is less

than 20%. Therefore, either solution (SOL.1 or SOL.2) can be used

equally well as an input parameter for calculating integrated optical

and physical properties of the aerosol size distribution.

2.6 Summary

The pseudo-empirical orthogonal method of solution2 9 was applied

for determining aerosol size distributions from backscattered measure-

ments. Two types of constraints were employed: a positivity constraint

alone and a combination of positivity and smoothing constraints. The

positivity constraint can be useful when the aerosol size distribution

is known to be a narrow distribution or an unsmooth function. The use
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of the positivity constraint allows for a solution of Eq. (68) by an

iterative process which converges very quickly (after 40 iterations).

The basis functions constructed from the "pseudo"-empirical

functions can reproduce many types of aerosol distributions and the

resulting measurements with good accuracy. The use of these basis

functions does not overly restrict the variety of possible physical

aerosol size distribution solutions. However, the use of empirical

basis functions is a constraint on the solution, inasmuch as it makes

it possible to obtain aerosol size distributions from the backscatter-

ing kernels, which otherwise would not be possible. The constraints

(i.e., smoothing, empirical basis functions) produce a solution which

is no longer completely objective but which reflects the assumptions

that are built into the constraints.

The accuracy of the solution [f(r)] at a discrete value of the

radius is about ± 50%. Therefore, interpretation of features of the

solution for specific radii can lead to wrong conclusions. Features

in the solution with widths smaller than 0.3 um in radius cannot be

resolved. The inferred aerosol size distribution solution can be used

for calculating integrated optical and mechanical properties of the

particulates. The quality of the solution depends on the applicability

of the constraints for the given problem. However, the inverse problem

cannot be solved without using some constraints.

If no constraints are used and if the problems of instability in

the inverse process are ignored, the types of solutions and the infor-

mation content which can be obtained from the backscattered measure-

ments will be apparent in the analysis of the natural basis function of

the kernels. The backscattering kernels contain more information about C
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aerosol size distribution than do most other optical kernels. However,

even if 40 optimal kernels with an accuracy of 0.5% are used for the

inversion process, solutions such as Junge-type distributions and log-

normal distributions, which are known to be present in the atmosphere

cannot be obtained. The error in inferring size distributions at dis-

crete radii is about ± 80%.

The volume backscattering cross-sections (to be used as the measure-

ment vector g) can be inferred from the solution to the lidar equation

with an accuracy of no better than 10-15%.43 In cases where the lidar

measurements are restricted to relatively short ranges, volume back-

scattering cross-sections can be inferred with much better accuracy.

However, the solution, f(r), continues to be mathematically and phys-

ically non-unique. The physical non-uniqueness is caused by the uncer-

tainties about particulate refractive indices and particle shapes. Dif-

ferent combinations of imaginary refractive indices, possible particle

shapes and orientations, and various breadths of derosol size distribu-

tions can all produce similar backscattering measurements. The result-

ing aerosol size distribution solution is, therefore, a plausible but

non-unique solution for the inversion of multi-wavelength backscattered

radiation, or any other type of optical measurements.

In this work, the measurements used contained 10% random error, a

magnitude of error typical of atmospheric measurements. This error is,

of course, reflected in the results (i.e., 20% deviation in properties

calculated from SOL.1 and SOL.2). It may be noted that the deviation

between the derived solutions and the truc silution can be much less in

a laboratory experiment where the accuracy 'n the measurements can be

improved and the refractive index and the sphericity of the particles

can be controlled.
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